深度学习中熵、联合熵、条件熵、相对熵、互信息的定义是什么? 为了更好的理解,需要了解的概率必备知识有: 大写字母X表示随机变量,小写字母x表示随机变量X的某个具体的取值; P(X)表示随机变量X的概率分布,P(X,Y)表示随机变量X、Y的联合概率分布,P(Y|X)表示已知随机变量X的情况下随机变量Y的条件概率分布; p(X = x)表示随机变量X取某个具体值的概率,简记为p(x); p(X = x, Y = y) 表示联合概率,简记为p(x,y),p(Y = y|X = x)表示条件概率,简记为p(y|x),且有:p(x,y) = p(x) * p(y|x 阅读全文 → 2023-02-13
如何理解机器学习中的梯度下降法? 经常在机器学习中的优化问题中看到一个算法,即梯度下降法,那到底什么是梯度下降法呢? 维基百科给出的定义是梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。 阅读全文 → 2023-02-13
深度学习中的熵指的是什么? 从名字上来看,熵给人一种很玄乎,不知道是啥的感觉。其实,熵的定义很简单,即用来表示随机变量的不确定性。之所以给人玄乎的感觉,大概是因为为何要取这样的名字,以及怎么用。 熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。在信息论里面,熵是对不确定性的测量。 阅读全文 → 2023-02-13
树形结构为什么不需要归一化? 因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。 按照特征值进行排序的,排序的顺序不变,那么所属的分支以及分裂点就不会有不同。而且,树模型是不能进行梯度下降的,因为构建树模型(回归树)寻找最优点时是通过寻找最优分裂点完成的,因此树模型是阶跃的,阶跃点是不可导的,并且求导没意义,也就不需要归一化。 阅读全文 → 2023-02-10
哪些机器学习算法不需要做归一化处理? 在实际应用中,需要归一化的模型: 1.基于距离计算的模型:KNN。 2.通过梯度下降法求解的模型:线性回归、逻辑回归、支持向量机、神经网络。 但树形模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林(Random Forest)。 阅读全文 → 2023-02-10
常用图像预处理操作? 一般先对数据进行归一化(Normalization)处理【0,1】,再进行标准化(Standardization)操作,用大数定理将数据转化为一个标准正态分布,最后再进行一些数据增强处理。 归一化后,可以提升模型精度。不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。 标准化后,可以加速模型收敛。最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。 阅读全文 → 2023-02-10