NVIDIA GPU环境,对深度学习的计算框架,做了哪些优化,比如具体CUDA开发环境是否有对DL有优化? 现在对于每一个深度学习框架软件,nvidia都发布了一个对应的docker image镜像,会支持最新的GPU功能和最新的CUDA版本,这些镜像里面的深度学习框架软件会自动调用cuDNN,cuBLAS,NCCL等nvidia发布的深度学习相关的库,会较好的支持tensor core,fp16等新特性。 另外,nvidia发布了一个nvidia版本的caffe,即nvcaffe,会对开源的caffe做一些优化,比如增加ImageDataLayer并行化,提升 阅读全文 → 2022-10-24
3D深度学习在医学影像中的应用技巧和难点? 深度学习本身不太关注是几维的数据,只是模型需要几维的输入而已。而三维深度学习可能输入的基础数据是三维的,对于医疗影像数据来说,三维深度学习是比较直接的过程,通常意义上,我们可以在二维上去完成,之后再进行三维的重建,从而获得对于三维数据的分析结果。从本质上来说,这两者差别不大。如果我们关注三维深度学习本身的相关性,比如做脑肿瘤或者某一个三维病灶的重建,同时又想用深度学习在三维空间中进行分析和识别,这时有一个重要的应用技巧,就是需要用三维卷积的方式来实现,三维卷积 阅读全文 → 2022-10-24
目前医疗影像的分辨率一般在什么程度,对人工智能算法的影响如何?如果使用4k的影像设备对智能识别的帮助会有多大? 对于医疗影像的分辨率,由于不同采集方式的分辨率差别是比较大的,比如我们现在常见的医疗影像,包括X光、CT、MRI、超声等等,常规的比如超声的分辨率一般是比较低的,而一些新的手段,尤其是以MRI和CT为主的断层扫描方式,它的分辨率是比较高的。4k的影像数据对智能识别会有帮助,尤其是对于一些细小目标的识别会有很大的帮助。实际上,主要并不是在于它是多少k的点数据,而在于它的基础解析度,基础解析度代表对不同扫描对象的每一个像素单元所代表的几何物理尺寸,几何物理尺寸越精 阅读全文 → 2022-10-24
如何评价计算精度对训练结果的影响。现在有说法是将计算的精度由双精降低到单精度,甚至使用定点精度,只要网络深度足够就对最终结果没有大的影响。这个趋势是否属实? 由于深度学习是一个直接基于实践结果体验的解决办法,因此计算精度并不能说深度足够就没有太大的影响,对于精度的选择,需要看实际的应用,如果数据足够多、足够大,那么网络深度只是一个方面;如果精度不能满足梯度,对后面的处理就会有很大的影响。因此,不能直接这样去理解,还需要看具体的训练结果,最好的解决办法就是能满足你训练和工程的需求,如果不能,大家可以一同讨论。 对于为什么网络没有出现前端小的扰动导致后续结果出现大的偏差的问题。这是深度学习一个大的优势,在大数据训练 阅读全文 → 2022-10-24
深度学习需要大量的样本,当识别效果不佳时,如何判断是样本问题和还是算法问题? 蓝海大脑深度学习高性能计算液冷工作站研究部门人员表示:这个问题也是目前经常存在的问题,由于在训练的过程当中,无法知道是数据集不合适还是算法不合适。我认为,这个时候不需要花太多精力去用一个不能定义的标准来判断另外一个不能定义的物体,而最好的办法就是能够带着你的数据去找一个模型进行迁移式训练的判断。比如在行业中,你了解到谁跟你做差不多的模型,你可以把这个模型拿过来,再把你的数据丢进去,如果这个数据是收敛的,那一定是算法问题,如果这个数据跑不通,那肯定是数据集的问题。 阅读全文 → 2022-10-21
NGC相比其他工具性能如何?NGC提供的GPU是否只能用来做深度学习? 我的理解可能是开源的与自己搭建的相比。对于NVIDIA来说,首先是跟深度学习框架的厂商会有些联合创新开发;第二,如果是有一些硬件的新特性或者软件的新特性,我们内部以及深度学习框架上的是会优先知道,因此在一块,我们开发会步入得比较早。当然,如果大家的技术实力比较强,可以自己搭建调优,也可以进行一些尝试。NGC容器主要目的让大家快速地使用一个性能比较好的版本,如果有兴趣的同行,可以继续深入研究;刚才课堂上讲到,容器包含有五类,除了深度学习,还有高性能计算、可视化以 阅读全文 → 2022-10-21