深度学习网络不收敛的原因有哪些?

很多同学会发现,为什么我训练网络的时候loss一直居高不下或者准确度时高时低,震荡趋势,一会到11,一会又0.1,不收敛。 又不知如何解决,博主总结了自己训练经验和看到的一些方法。


首先你要保证训练的次数够多,不要以为一百两百次就会一直loss下降或者准确率一直提高,会有一点震荡的。只要总体收敛就行。若训练次数够多(一般上千次,上万次,或者几十个epoch)没收敛,则试试下面方法:


1. 数据和标签

数据分类标注是否准确?数据是否干净?数据库太小一般不会带来不收敛的问题,只要你一直在train总会收敛(rp问题跑飞了不算)。反而不收敛一般是由于样本的信息量太大导致网络不足以fit住整个样本空间。样本少只可能带来过拟合的问题


2. 学习率设定不合理

在自己训练新网络时,可以从0.1开始尝试,如果loss不下降的意思,那就降低,除以10,用0.01尝试,一般来说0.01会收敛,不行的话就用0.001. 学习率设置过大,很容易震荡。不过刚刚开始不建议把学习率设置过小,尤其是在训练的开始阶段。在开始阶段我们不能把学习率设置的太低否则loss不会收敛。我的做法是逐渐尝试,从0.1,0.08,0.06,0.05 …逐渐减小直到正常为止,


有的时候候学习率太低走不出低估,把冲量提高也是一种方法,适当提高mini-batch值,使其波动不大。,


3.网络设定不合理

如果做很复杂的分类任务,却只用了很浅的网络,可能会导致训练难以收敛,换网络换网络换网络,重要的事情说三遍,或者也可以尝试加深当前网络。


4.数据集label的设置

检查lable是否有错,有的时候图像类别的label设置成1,2,3正确设置应该为0,1,2。


5、数据归一化

神经网络中对数据进行归一化是不可忽略的步骤,网络能不能正常工作,还得看你有没有做归一化,一般来讲,归一化就是减去数据平均值除以标准差,通常是针对每个输入和输出特征进行归一化


train loss与test loss结果分析

train loss 不断下降,test loss不断下降,说明网络仍在学习;

train loss 不断下降,test loss趋于不变,说明网络过拟合;

train loss 趋于不变,test loss不断下降,说明数据集100%有问题;

train loss 趋于不变,test loss趋于不变,说明学习遇到瓶颈,需要减小学习率或批量数目;

train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗等问题。


蓝海大脑 京ICP备18017748号-1