怎么理解Wide & Deep?
Wide & Deep 是指使用并行处理两个部分(Wide 模型和 Deep 模型)的输出,并对其输出进行求和以创建交互概率的网络类别。Wide 模型是特征及其转换的一个广义线性模型。Deep 模型是一个密集神经网络 (DNN),由 5 个隐藏 MLP 层(包含 1024 个神经元)组成,每个层都从密集特征嵌入开始。分类变量会嵌入到连续向量空间中,然后通过学习的嵌入或用户确定的嵌入输入到 DNN 中。
为何模型能够成功执行推荐任务,原因之一是提供数据中的两种学习模式:“deep”和“shallow”。复杂的非线性 DNN 能够学习数据中丰富的关系表征,并可通过嵌入来推广到相似的物品,但需要查看相关关系的多种示例才能做得更好。另一方面,线性部分能够“记住”可能仅在训练集内发生几次的简单关系。
综合来说,这两种表征信道通常比单种表征信道提供更多的建模能力。NVIDIA 与许多使用离线和在线指标报告改进的行业合作伙伴合作,他们使用 Wide & Deep 替代传统机器学习模型。
蓝海大脑 京ICP备18017748号-1