做深度学习训练的卷积和池化操作的作用?
卷积(convolution )操作的作用如下:
局部感知,参数共享的特点大大降低了网络参数,保证了网络的稀疏性。
通过卷积核的组合以及随着网络后续操作的进行,卷积操作可获取图像不同区域的不同类型特征;模型靠近底部的层提取的是局部的、高度通用的特征图,而更靠近顶部的层提取的是更加抽象的语义特征。
池化/汇合(pooling )操作作用如下:
特征不变性(feature invariant)。汇合操作使模型更关注是否存在某些特征而不是特征具体的位置可看作是一种很强的先验,使特征学习包含某种程度自由度,能容忍一些特征微小的位移。
特征降维。由于汇合操作的降采样作用,汇合结果中的一个元素对应于原输入数据的一个子区域(sub-region),因此汇合相当于在空间范围内做了维度约减(spatially dimension reduction),从而使模型可以抽取更广范围的特征。同时减小了下一层输入大小,进而减小计算量和参数个数。
在一定程度上能防止过拟合(overfitting),更方便优化。
蓝海大脑 京ICP备18017748号-1